#### **Eurovent Partners Meeting**





## A/C Technology transformation in high-ambient temperature (HAT) countries through MLF

Ayman Eltalouny
International Partnership Coordinator
OzonAction, Law Division
UN Environment Programme (UNEP)

#### **HPMPs vs. HFCs Phase-down**

**The Overlapped Commitments for developing countries** 



# **Priority Sectors over lifetime of Montreal Protocol**

#### CFCs (1987 – 2010)

- Foam
- Aerosol
- Dom Ref
- MAC
- Solvents + Halon
- Servicing

#### HCFCs (2007-2030/2040)

- Foam
- Res. A/C
- Comm. A/C
- Servicing

#### HFCs (2020-2048)

- MAC
- Dom Ref
- Comm Ref (Cold Chain)
- -<mark>A/C</mark>
- Servicing

#### **High Ambient Temperature**

**Montreal Protocol Definition** 

An average of at least two months per year over 10 consecutive years of a peak monthly average temperature above 35°C

#### **High Ambient Temperature (HAT) Countries**

Algeria, Bahrain, Benin, Burkina Faso, Central African Republic, Chad, Cote d'Ivoire, Djibouti, Egypt, Eritrea, Gambia, Ghana, Guinea, Guinea-Bissau, Iran, Iraq, Jordan, Kuwait, Libya, Mali, Mauritania, Niger, Nigeria, Oman, Pakistan, Qatar, Saudi Arabia, Senegal, Sudan, Syria, Togo, Tunisia, Turkmenistan, United Arab Emirates

- **Africa-Francophone**: Algeria, Benin, Burkina Faso, Central African Republic, Chad, Cote d'Ivoire, Djibouti, Guinea, Guinea Bissau, Mali, Mauritania, Niger, Senegal, Togo and Tunisia
- **Africa- Anglophone**: Egypt, Eritrea, Gambia, Ghana, Libya, Nigeria and Sudan
- **West Asia**: Bahrain, Iraq, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria and United Arab Emirates
- **South Asia**: Iran and Pakistan
- **ECA:** Turkmenistan

## Background & Early Research

- Most of the research has been at the "standard ambient" of 35°C dry bulb temperature with extrapolation to higher temperatures.
   Simulation and testing was also done for some of the available refrigerants:
  - Earlier modelling by Chin and Spatz (1999) conducting simulations comparing R-410A to HCFC-22 at 52°C ambient;
  - Domanski and Payne (2002) carried out measurements of a unitary air conditioner to compare HCFC-22 and R-410A;
  - Biswas and Cremaschi (2012) measured the performance of some mixtures like "DR-4" and "DR-5 at 46°C.

## **Dedicated Research Efforts**

- "Promoting low GWP Refrigerants for Air-Conditioning Sectors in High-Ambient Temperature Countries" (PRAHA)
  - PRAHA-I report published in 2016
  - PRAHA-II report published in 2019
- "Promotion of Low-GWP Refrigerants for the Air Conditioning Industry in Egypt" (EGYPRA)
  - Report published in 2019
- The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low—global warming potential (Low-GWP) Refrigerants Phases I and II
  - Phase I report published in 2015
  - Phase II Report published in 2016
- The Alternative Refrigerant Evaluation Program (AREP) Phases I and II
  - Phase I Reports published in 2014 (40 test reports)
  - Phase II Reports published in in 2016

| Program |                                                                                                                                | PRAHA                                                                                                                                                                    |               |                                                                                                                                           | EGYPRA                                                                                                                                                                   |                                                                                                                            |                                                                        | ORNL – Phase                                                               | e I (Mini-split AC)                                                                | AREP-II                                                            |                      |                                                             |
|---------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-------------------------------------------------------------|
| 1       | Type of test                                                                                                                   | Custom built test prototypes, comparing with base units: HCFC-22 and R-410A                                                                                              |               |                                                                                                                                           | with base units: HCFC-22 and R-410A                                                                                                                                      |                                                                                                                            | Soft optimization tests, comparing with base units: HCFC-22 and R-410A |                                                                            | Soft optimization or drop in of individual units tested against a base R-410A unit |                                                                    |                      |                                                             |
| 2       | No. of<br>prototypes                                                                                                           | 13 prototypes, each specific capacity and refrigerant built by one or two OEMs, compared with base refrigerants: HCFC-22 and R-410A. Total prototype and base units = 22 |               |                                                                                                                                           | 28 prototypes, each specific one capacity and one refrigerant built by one OEM, compared with base refrigerants: HCFC-22 and R-410A. Total prototype and base units = 37 |                                                                                                                            |                                                                        | ,                                                                          |                                                                                    | 22 units from different OEMs ranging from splits to water chillers |                      |                                                             |
| Ì       |                                                                                                                                | 60 Hz                                                                                                                                                                    |               | 50 Hz                                                                                                                                     |                                                                                                                                                                          | 50 Hz                                                                                                                      |                                                                        | 6                                                                          | 60 Hz                                                                              | 60Hz                                                               |                      |                                                             |
| 3       | categories                                                                                                                     | Window                                                                                                                                                                   | Mini<br>Split | Ducted                                                                                                                                    | Packaged                                                                                                                                                                 | Mini Split                                                                                                                 | Mini Split                                                             | Mini Split                                                                 | Central                                                                            | Split unit                                                         | Split unit           | 34 MBH chiller, 2x 36 MBH split,<br>48 MBH packaged, 60 MBH |
|         |                                                                                                                                | 18 MBH                                                                                                                                                                   |               | 36<br>MBH                                                                                                                                 | 90 MBH                                                                                                                                                                   | 12 MBH                                                                                                                     | 18 MBH                                                                 | 24 MBH                                                                     | 120 MBH                                                                            | 18 MBH R22 eq.                                                     | 18 MBH R-410a<br>eq. | packaged, 72 MBH packaged                                   |
| 4       | Testing<br>conditions                                                                                                          | ANSI/AHRI Standard 210/240 and ISO 5151 at T1, T3 and T3+ (50°C) and a continuity test for 2 hours at 52°C                                                               |               |                                                                                                                                           | 8+ (50°C)                                                                                                                                                                | EOS 4814 and 3795 (ISO 5151) T1, T2, and T3 conditions                                                                     |                                                                        | ANSI/AHRI Standard 210/240 and ISO 5153 T3 (2010) condition                |                                                                                    | ANSI/AHRI 210/240, at T1, T3, and 125 °F                           |                      |                                                             |
| 5       |                                                                                                                                | Prototypes built at six OEMs, test at Intertek                                                                                                                           |               |                                                                                                                                           | Prototypes built at eight OEMs, witness testing at OEM labs                                                                                                              |                                                                                                                            | ORNL, one supplier – soft optimization in situ                         |                                                                            | Individual suppliers, testing at own premises                                      |                                                                    |                      |                                                             |
| 6       | Eq. to HCFC-22: HC-290, R-444B (L-20), DR-3  Eq. to R-410A: HFC-32, R-447A (L-41), R-454B (DR-5A)  Final report end March 2016 |                                                                                                                                                                          | 447A (L-41-   | Eq. to HCFC-22: HC-290, R-444B (L-20),<br>DR-3, R-457A (ARM-32d)<br>- Eq. to R-410A: HFC-32, R-447A (L-41-1), R-<br>454B (DR-5A), ARM-71d |                                                                                                                                                                          | Eq. to HCFC-22:N-20B, DR-3, ARM-20B, R-444B (L-20A), HC-290 Eq. to R-410A: HFC-32, R-447A (L-41-1), DR-55, ARM-71d, HPR-2A |                                                                        | Eq. to R-410A: HFC-32, DR-5A,<br>DR-55, L-41-1, L-41-2, ARM-<br>71a, HPR2A |                                                                                    |                                                                    |                      |                                                             |

# PRAHA-I

Testing Customs Built Prototypes at HAT Conditions

## PRAHA Project





| Comparable to HCFC-22 | Comparable to R-410A |
|-----------------------|----------------------|
| HC-290                | HFC-32               |
| R-444B (L-20)         | R-447A (L-41-1)      |
| R-454C (DR-3)         |                      |

- 13 custom-built prototypes in four categories ranging from 5 to 27 kW, testing five different alternatives against the baseline refrigerants HCFC-22 and R-410A
- 23 units in total, including base units. Each prototype by a manufacturer was tested against a base unit by the same manufacturer;
- An independent International Technical Review Team to assist project team in reviewing the process, results, and final report.

- Prototypes to have the same cooling capacity, fit in the same box dimensions as their respective base units, and meet the minimum energy efficiency, EER of 7 at 46 °C;
- Tests were performed at an independent reputable lab, Intertek;
- Test conditions at 35 °C, 46 °C, and 50 °C ambient;
- An endurance test at 52 °C: compressor will not trip when run continuously for two hours;
- Tests performed at maximum speed setting (full load);

## Degradation vs. temperature









## Results graphic summary









# **EGYPRA**

Testing more refrigerants in more prototypes

## Prototype & Refrigerants



| HCFC-22<br>Alternatives        | Technology<br>Provider | ASHRAE classification | GWP<br>(100 years, RTOC) |  |
|--------------------------------|------------------------|-----------------------|--------------------------|--|
| R-290                          | -                      | <b>A3</b>             | 5                        |  |
| R-444 B<br>(L-20 A)            | Honeywell              | A2L                   | 310                      |  |
| R-454 C<br>(DR-3) Opteon XL-20 | Chemours<br>(Du Pont)  | A2L                   | 295                      |  |
| R-457 A<br>(ARM – 20d(a))      | Arkema                 | A2L                   | 251                      |  |

| R-410 A<br>Alternatives        | Technology<br>Provider | ASHRAE classification | GWP<br>(100 years, RTOC) |  |
|--------------------------------|------------------------|-----------------------|--------------------------|--|
| R-32                           | Daikin                 | A2L                   | 704                      |  |
| R-447A<br>(L-41-2)             | Honeywell              | A2L                   | 600                      |  |
| R-454 B<br>(DR-5) Opteon XL-41 | Chemours<br>(Du Pont)  | A2L                   | 510                      |  |
| R-459 A<br>(ARM – 71a)         | Arkema                 | A2L                   | 466                      |  |

## Results – Alternatives to HCFC-22



## Results – Alternatives to R-410A



# Combined Findings

Of the four projects

## **Combined Findings**

| Category                     | PRAHA                                                                                                                                                                                          | AREP                                                                                                                                                        | ORNL                                                                                                                                   | EGYPRA                                                                                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Availability of Alternatives | There are potential alternatives that have comparable cooling capacity and energy efficiency performance to the baseline refrigerants                                                          | There are several alternative candidates with comparable performance to the baseline refrigerants they intend to replace                                    | Losses in cooling capacity are typically easier to recover through engineering optimization than are losses in COP                     | Test results show that all refrigerants used in the project are viable alternatives from a thermodynamic point of view                                   |
| Potential for<br>Improvement | There is a significant need to improve the R&D capacity at the local air-conditioning industry                                                                                                 | The test results should be carefully interpreted and additional study is required to evaluate the potential improvement through further "soft optimization" | The primary practical limit to improvements in capacity is the physical size of the unit; but not expected to be a significant concern | The potential for improvement for prototypes working with alternatives to R-410A is better is better than for those working with alternatives to HCFC-22 |
| Energy Efficiency            | The process of improving energy efficiency (EE) standards for air-conditioning application in HAT countries is progressing in much quicker pace compared to assessing alternative refrigerants | Full optimization of systems will likely improve the performance of these refrigerants                                                                      | The COP losses and the increases in compressor discharge temperature will be the primary focus of future optimization efforts          | when compared to MEPS) for Egypt, results show there are challenges for the industry to provide high efficiency AC units                                 |
| Other                        | A comprehensive risk assessment tailored to HAT conditions is needed                                                                                                                           |                                                                                                                                                             |                                                                                                                                        | 17                                                                                                                                                       |

# PRAHA-II

## **PRAHA-II Components**

#### **Component A**

Capacity Building of local design capabilities

1) Knowledge sharing and developing a technical platform

2) Optimizing the design of local industry-built prototypes

#### **Component B**

3) Developing a comprehensive risk assessment model

## Optimizing the design of local industry-built prototypes

#### Elements include:

- 1. Analyzing the design of PRAHA-I prototypes;
- 2. Design optimization of a selected number of PRAHA-I prototypes;
- 3. Building and testing prototypes to optimized design plus testing new refrigerants emerging since PRAHA-I;

Additional component:

Analyzing leak-recharge effect on performance for high glide alternatives

## **Matrix of Activities**

|      |          | Activity 1   | Activity 2   | Activity 3         | Activity 4               | Additional    |
|------|----------|--------------|--------------|--------------------|--------------------------|---------------|
| Hoit | T        | Phase I data | Simulated    | Optimizing PRAHA-I | <b>Testing Optimized</b> |               |
| Unit | Type     | Analysis     | Optimization | prototype          | Prototypes               | Leak Analysis |
|      |          |              | R444B        |                    |                          |               |
| 1    | Window   | R444B (L-20) | R454C        |                    |                          |               |
|      | VVIIIdov | N444B (L-20) | R290         |                    |                          |               |
|      |          |              | R457A        |                    |                          |               |
| 6    | Split    | R32          | R32          | R32                | R32                      |               |
| U    |          | NOZ          | R454B        | R454B              | R454B                    | R454B         |
| 10   | Ducted   | R32          | R447B        | R447B              | R447B                    | R447B         |
| 10   |          | NJZ          | R452B        | R452B              | R452B                    | R452B         |
| 4    | Split    | R290         | R290         |                    |                          |               |
| 2    | Window   | R444B        |              |                    |                          |               |
| 3    | Window   | R454C (DR3)  |              |                    |                          |               |
| 5    | Split    | R-32         |              |                    |                          |               |
| 7    | Split    | R447A (L41)  |              |                    |                          |               |
| 8    | Split    | R444B        |              |                    |                          |               |
| 9    | Split    | R454C        |              |                    |                          |               |
| 11   | Ducted   | R444B        |              |                    |                          |               |
| 12   | Ducted   | R454C        |              |                    |                          |               |

# Analysis of PRAHA-I Prototypes

Physical inspection

Prior experimental results assessment

First order assessment of component and refrigerant performance

Development of a validated model

Detailed assessment of why the performance is "good, i.e. as designed" or "bad, why it did not perform as designed"

# **Evaluation of Optimized Prototypes**

Optimized prototypes tested in a multi-zone environmental chamber to evaluate their performance according to ASHRAE Standard 37 at relevant indoor and outdoor conditions (AHRI 210/240 "A" condition, ISO 5151 "T3" condition, hot and extreme conditions)

# Leak Charge Analysis

Analyzing leak-recharge effect on performance for high glide alternatives

### Procedure

- 1. Run unit until steady-state is achieved (repeat 46°C performance test), monitoring capacity and sub-cooling;
- 2. Gradually remove refrigerant from vapor line until capacity is reduced to approximately 50%, if possible;
- 3. Store and weigh removed refrigerant;
- 4. Re-charge with new refrigerant until same sub-cooling is achieved;
- 5. Compare cooling capacities; if more than 5% deviation is observed, repeat steps 1-4, however in step 2, reduce capacity to 25% only;
- 6. Repeat steps 1-5 for the liquid line.





# Risk Assessment Study

#### **Flammability**

For a fire to happen there needs to be three elements: a rapid leak of the flammable gas, a concentration higher than the lower flammability level, and a source of ignition.



Procedure of Risk Evaluation according to ISO/IEC 51



#### **Process of a Risk Assessment Model**

- I. Selection of equipment type and application
- II. Identify Acceptable and tolerable risk
- III. Analyze Product Cycle
- IV. Risk Scenarios & Risk Analysis Sources
- V. Data Collection
- VI. Fault Tree Analysis (FTA)
- VII. Suggest Measure to Mitigate Intolerable Risk

|                            |                             |                        |                      | Tolerab         |                        | le risk         |                        |                  |
|----------------------------|-----------------------------|------------------------|----------------------|-----------------|------------------------|-----------------|------------------------|------------------|
| Prod                       | luct/System                 | Unit Population        |                      |                 | Usage stage            |                 | Service sta            | ge               |
| Resi                       | dential AC                  | 1 x 10 <sup>8</sup>    |                      |                 | 1 x 10 <sup>-10</sup>  |                 | 1 x 10 <sup>-9</sup>   |                  |
| Com                        | imercial AC                 | 7.8 x 10 <sup>6</sup>  |                      |                 | 1.3 x 10 <sup>-9</sup> |                 | 1.3 x 10 <sup>-8</sup> |                  |
| VRF                        |                             | 1                      | 1 x 10 <sup>7</sup>  |                 | 1 x 10 <sup>-9</sup>   |                 | 1 x 10 <sup>-8</sup>   |                  |
| Chill                      | ers                         | 1.3                    | 34 x 10 <sup>5</sup> |                 | 7.5 x 10 <sup>-7</sup> |                 | 7.5 x 10 <sup>-7</sup> |                  |
| Cond                       | densing units               | 1.46 x 10 <sup>5</sup> |                      |                 | 6.9 x 10 <sup>-8</sup> |                 | 6.9 x 10 <sup>-7</sup> |                  |
| <b>A</b>                   | Frequently                  | 10-4                   |                      |                 |                        |                 | Nota                   |                  |
|                            | Sometime                    | 10 <sup>-5</sup>       | 5                    | Acceptable with |                        |                 |                        | epts.            |
|                            | Rare                        | 10 <sup>-6</sup>       | i                    |                 |                        | Condi           | le,                    | 46/e             |
| <b> </b>                   | Usually not                 | 10 <sup>-7</sup>       | ,                    | 40              | Ceptable               | Mic             | with                   |                  |
| Likelihood                 | Very difficult              | 10-8                   |                      |                 | 60 to 1                |                 |                        |                  |
| elih                       | Extremely difficult         | 10 <sup>-9</sup>       |                      |                 | 40%                    |                 |                        |                  |
| Lik                        | Near Zero 10 <sup>-10</sup> |                        |                      |                 |                        |                 |                        |                  |
|                            |                             |                        | (                    | 0               | 1                      | II              | III                    | IV               |
| Possibility of an incident |                             |                        |                      | No<br>damage    | Minor<br>damage        | Light<br>damage | Major<br>damage        | Lethal<br>damage |
|                            |                             |                        |                      |                 | <b>→</b>               |                 |                        |                  |



## Conclusions

- Building a risk assessment model for the HAT countries that suits the climate and the service practices of the local technicians helps the HAT countries,
  - Also sets the stage for all A5 countries, in understanding the risk associated with flammable refrigerants;
- The model helps in adopting the needed regulations and training programs
  - especially in relation to the logistics of lower-GWP based technologies i.e. installation, transportation, storage, servicing and decommissioning;
- The concept of risk assessment is quite similar worldwide,
  - including methodologies in calculating and analyzing severity and frequency of risks.
  - However, criteria for acceptable tolerance levels may differ depending on local considerations;
- Measures to mitigate risks would depend on type of existing/operational standards and/or codes in each country;
- Learning from the pioneers in risk assessment models through partnership and cooperation will leapfrog the technical difficulties and provide a quick access to building the model.

# Indirect Evaporative Cooling Project for Egypt.(IEC)

# DIRECT / DIRECT EVAPORATIC COOLING UNIT



#### **Project Outline**





| # | Zone                        |
|---|-----------------------------|
| 1 | North Coast Region          |
| 2 | Delta and Cairo region      |
| 3 | North Upper Egypt Region    |
| 4 | Southern Upper Egypt Region |
| 5 | Eastern Coast Region        |
| 6 | High Heights Region         |
| 7 | Desert Region               |
| 8 | South of Egypt Region       |

# Thank you

#### **Ayman Eltalouny**

Coordinator International Partnerships
OzonAction, Law Division
UN Environment Programme (UNEP)
Email: <a href="mailto:ayman.eltalouny@un.org">ayman.eltalouny@un.org</a>
<a href="https://www.unenvironment.org/ozonaction/">https://www.unenvironment.org/ozonaction/</a>

